

PyMongoArrow 0.2.0 Documentation

Overview

PyMongoArrow is a PyMongo [http://pymongo.readthedocs.io/] extension
containing tools for loading MongoDB [http://www.mongodb.org] query result
sets as Apache Arrow [http://arrow.apache.org] tables,
Pandas [https://pandas.pydata.org] and NumPy [https://numpy.org] arrays.
PyMongoArrow is the recommended way to materialize MongoDB query result sets as
contiguous-in-memory, typed arrays suited for in-memory analytical processing
applications. This documentation attempts to explain everything you need to
know to use PyMongoArrow.

	Installing / Upgrading
	Instructions on how to get the distribution.

	Quick Start
	Start here for a quick overview.

	Supported Types
	A list of BSON types that are supported by PyMongoArrow.

	Frequently Asked Questions
	Frequently asked questions.

	pymongoarrow – Tools for working with MongoDB and PyArrow
	The complete API documentation, organized by module.

Getting Help

If you’re having trouble or have questions about PyMongoArrow, ask your question on
our MongoDB Community Forum [https://developer.mongodb.com/community/forums/tags/c/drivers-odms-connectors/7/python-driver].
Once you get an answer, it’d be great if you could work it back into this
documentation and contribute!

Issues

All issues should be reported (and can be tracked / voted for /
commented on) at the main MongoDB JIRA bug tracker [http://jira.mongodb.org/browse/PYTHON], in the “Python Driver”
project.

Feature Requests / Feedback

Use our feedback engine [https://feedback.mongodb.com/forums/924286-drivers]
to send us feature requests and general feedback about PyMongoArrow.

Contributing

Contributions to PyMongoArrow are encouraged. To contribute, fork the project on
GitHub [https://github.com/mongodb-labs/mongo-arrow/tree/main/bindings/python]
and send a pull request.

See also Developer Guide.

Changes

See the Changelog for a full list of changes to PyMongoArrow.

About This Documentation

This documentation is generated using the Sphinx [https://www.sphinx-doc.org/en/master/] documentation generator.
The source files for the documentation are located in the docs/ directory
of the PyMongoArrow distribution. To generate the docs locally run the
following command from the root directory of the PyMongoArrow source:

$ cd docs && make html

Indices and tables

	Index

	Module Index

	Search Page

Installing / Upgrading

System Compatibility

PyMongoArrow is regularly built and tested on macOS and Linux
(Ubuntu 20.04).

Python Compatibility

PyMongoArrow is currently compatible with CPython 3.6, 3.7, 3.8 and 3.9.

Using Pip

PyMongoArrow is available on
PyPI [http://pypi.python.org/pypi/pymongo/]. We recommend using
pip [http://pypi.python.org/pypi/pip] to install pymongoarrow
on all platforms:

$ python -m pip install pymongoarrow

To get a specific version of pymongo:

$ python -m pip install pymongoarrow==0.1.1

To upgrade using pip:

$ python -m pip install --upgrade pymongoarrow

Attention

Installing PyMongoArrow from
wheels [https://www.python.org/dev/peps/pep-0427/] on macOS Big Sur
requires pip >= 20.3. To upgrade pip run:

$ python -m pip install --upgrade pip

We currently distribute wheels for macOS and Linux on x86_64
architectures.

Dependencies

PyMongoArrow requires:

	PyMongo>=3.11,<4

	PyArrow>=3,<3.1

To use PyMongoArrow with a PyMongo feature that requires an optional
dependency, users must install PyMongo with the given dependency manually.

Note

PyMongo’s optional dependencies are detailed
here [https://pymongo.readthedocs.io/en/stable/installation.html#dependencies].

For example, to use PyMongoArrow with MongoDB Atlas’ mongodb+srv:// URIs
users must install PyMongo with the srv extra in addition to installing
PyMongoArrow:

$ python -m pip install 'pymongo[srv]<4' pymongoarrow

Applications intending to use PyMongoArrow APIs that return query result sets
as pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] instances (e.g. find_pandas_all())
must also have pandas installed:

$ python -m pip install pandas

Installing from source

See Installing from source.

Quick Start

This tutorial is intended as an introduction to working with
PyMongoArrow. The reader is assumed to be familiar with basic
PyMongo [https://pymongo.readthedocs.io/en/stable/tutorial.html] and
MongoDB [https://docs.mongodb.com] concepts.

Prerequisites

Before we start, make sure that you have the PyMongoArrow distribution
installed. In the Python shell, the following should
run without raising an exception:

import pymongoarrow as pma

This tutorial also assumes that a MongoDB instance is running on the
default host and port. Assuming you have downloaded and installed [https://docs.mongodb.com/manual/installation/] MongoDB, you can start
it like so:

$ mongod

Extending PyMongo

The pymongoarrow.monkey module provides an interface to patch PyMongo,
in place, and add PyMongoArrow’s functionality directly to
Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection] instances:

from pymongoarrow.monkey import patch_all
patch_all()

After running patch_all(), new instances of
Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection] will have PyMongoArrow’s APIs,
e.g. find_pandas_all().

Note

Users can also directly use any of PyMongoArrow’s APIs
by importing them from pymongoarrow.api. The only difference in
usage would be the need to manually pass the instance of
Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection] on which the operation is to be
run as the first argument when directly using the API method.

Test data

Before we begein, we must first add some data to our cluster that we can
query. We can do so using PyMongo:

from datetime import datetime
from pymongo import MongoClient
client = MongoClient()
client.db.data.insert_many([
 {'_id': 1, 'amount': 21, 'last_updated': datetime(2020, 12, 10, 1, 3, 1)},
 {'_id': 2, 'amount': 16, 'last_updated': datetime(2020, 7, 23, 6, 7, 11)},
 {'_id': 3, 'amount': 3, 'last_updated': datetime(2021, 3, 10, 18, 43, 9)},
 {'_id': 4, 'amount': 0, 'last_updated': datetime(2021, 2, 25, 3, 50, 31)}])

Defining the schema

PyMongoArrow relies upon a user-specified data schema to marshall
query result sets into tabular form. Users can define the schema by
instantiating pymongoarrow.api.Schema using a mapping of field names
to type-specifiers, e.g.:

from pymongoarrow.api import Schema
schema = Schema({'_id': int, 'amount': float, 'last_updated': datetime})

There are multiple permissible type-identifiers for each supported BSON type.
For a full-list of supported types and associated type-identifiers see
Supported Types.

Find operations

We are now ready to query our data. Let’s start by running a find
operation to load all records with a non-zero amount as a
pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame]:

df = client.db.data.find_pandas_all({'amount': {'$gt': 0}}, schema=schema)

We can also load the same result set as a pyarrow.Table [https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table] instance:

arrow_table = client.db.data.find_arrow_all({'amount': {'$gt': 0}}, schema=schema)

Or as numpy.ndarray [https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray] instances:

ndarrays = client.db.data.find_numpy_all({'amount': {'$gt': 0}}, schema=schema)

In the NumPy case, the return value is a dictionary where the keys are field
names and values are the corresponding arrays.

Aggregate operations

Running aggregate operations is similar to find. Here is an example of
an aggregation that loads all records with an amount less than 10:

pandas
df = client.db.data.aggregate_pandas_all([{'$match': {'amount': {'$lte': 10}}}], schema=schema)
arrow
arrow_table = client.db.data.aggregate_arrow_all([{'$match': {'amount': {'$lte': 10}}}], schema=schema)
numpy
ndarrays = client.db.data.aggregate_numpy_all([{'$match': {'amount': {'$lte': 10}}}], schema=schema)

Writing to other formats

Result sets that have been loaded as Arrow’s Table [https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table] type can
be easily written to one of the formats supported by
PyArrow [https://arrow.apache.org/docs/python/index.html]. For example,
to write the table referenced by the variable arrow_table to a Parquet
file example.parquet, run:

import pyarrow.parquet as pq
pq.write_table(arrow_table, 'example.parquet')

Pandas also supports writing DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] instances to a variety
of formats including CSV, and HDF. For example, to write the data frame
referenced by the variable df to a CSV file out.csv, run:

df.to_csv('out.csv', index=False)

Supported Types

PyMongoArrow currently supports a small subset of all BSON types.
Support for additional types will be added in subsequent releases.

Note

For more information about BSON types, see the
BSON specification [http://bsonspec.org/spec.html].

	BSON Type

	Type Identifiers

	64-bit binary floating point

	py.float, an instance of pyarrow.float64()

	32-bit integer

	an instance of pyarrow.int32()

	64-bit integer

	int, bson.int64.Int64 [https://pymongo.readthedocs.io/en/stable/api/bson/int64.html#bson.int64.Int64], an instance of pyarrow.int64()

	UTC datetime

	an instance of timestamp with ms resolution, py.datetime.datetime

Type identifiers can be used to specify that a field is of a certain type
during pymongoarrow.api.Schema declaration. For example, if your data
has fields ‘f1’ and ‘f2’ bearing types 32-bit integer and UTC datetime
respectively, your schema can be defined as:

schema = Schema({'f1': pyarrow.int32(), 'f2': pyarrow.timestamp('ms')})

pymongoarrow – Tools for working with MongoDB and PyArrow

Sub-modules:

	api – PyMongoArrow APIs

	monkey – Add PyMongoArrow APIs to PyMongo

api – PyMongoArrow APIs

	
class pymongoarrow.api.Schema(schema)

	A mapping of field names to data types.

To create a schema, provide its constructor a mapping of field names
to their expected types, e.g.:

schema1 = Schema({'field_1': int, 'field_2': float})

Each key in schema is a field name and its corresponding value
is the expected type of the data contained in the named field.

Data types can be specified as pyarrow type instances (e.g.
an instance of pyarrow.int64), bson types (e.g.
bson.Int64), or python type-identifiers (e.g. int,
float). To see a complete list of supported data types and their
corresponding type-identifiers, see Supported Types.

	
pymongoarrow.api.aggregate_arrow_all(collection, pipeline, *, schema, **kwargs)

	Method that returns the results of an aggregation pipeline as a
pyarrow.Table [https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table] instance.

	Parameters

	
	collection: Instance of Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection].
against which to run the aggregate operation.

	pipeline: A list of aggregation pipeline stages.

	schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed
directly to the underlying aggregate operation.

	Returns

	An instance of class:pyarrow.Table.

	
pymongoarrow.api.aggregate_numpy_all(collection, pipeline, *, schema, **kwargs)

	Method that returns the results of an aggregation pipeline as a
dict instance whose keys are field names and values are
ndarray [https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray] instances bearing the appropriate dtype.

	Parameters

	
	collection: Instance of Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection].
against which to run the find operation.

	query: A mapping containing the query to use for the find operation.

	schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed
directly to the underlying aggregate operation.

This method attempts to create each NumPy array as a view on the Arrow
data corresponding to each field in the result set. When this is not
possible, the underlying data is copied into a new NumPy array. See
pyarrow.Array.to_numpy() [https://arrow.apache.org/docs/python/generated/pyarrow.Array.html#pyarrow.Array.to_numpy] for more information.

NumPy arrays returned by this method that are views on Arrow data
are not writable. Users seeking to modify such arrays must first
create an editable copy using numpy.copy().

	Returns

	An instance of dict.

	
pymongoarrow.api.aggregate_pandas_all(collection, pipeline, *, schema, **kwargs)

	Method that returns the results of an aggregation pipeline as a
pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] instance.

	Parameters

	
	collection: Instance of Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection].
against which to run the find operation.

	pipeline: A list of aggregation pipeline stages.

	schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed
directly to the underlying aggregate operation.

	Returns

	An instance of class:pandas.DataFrame.

	
pymongoarrow.api.find_arrow_all(collection, query, *, schema, **kwargs)

	Method that returns the results of a find query as a
pyarrow.Table [https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table] instance.

	Parameters

	
	collection: Instance of Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection].
against which to run the find operation.

	query: A mapping containing the query to use for the find operation.

	schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed
directly to the underlying find operation.

	Returns

	An instance of class:pyarrow.Table.

	
pymongoarrow.api.find_numpy_all(collection, query, *, schema, **kwargs)

	Method that returns the results of a find query as a
dict instance whose keys are field names and values are
ndarray [https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray] instances bearing the appropriate dtype.

	Parameters

	
	collection: Instance of Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection].
against which to run the find operation.

	query: A mapping containing the query to use for the find operation.

	schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed
directly to the underlying find operation.

This method attempts to create each NumPy array as a view on the Arrow
data corresponding to each field in the result set. When this is not
possible, the underlying data is copied into a new NumPy array. See
pyarrow.Array.to_numpy() [https://arrow.apache.org/docs/python/generated/pyarrow.Array.html#pyarrow.Array.to_numpy] for more information.

NumPy arrays returned by this method that are views on Arrow data
are not writable. Users seeking to modify such arrays must first
create an editable copy using numpy.copy().

	Returns

	An instance of dict.

	
pymongoarrow.api.find_pandas_all(collection, query, *, schema, **kwargs)

	Method that returns the results of a find query as a
pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] instance.

	Parameters

	
	collection: Instance of Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection].
against which to run the find operation.

	query: A mapping containing the query to use for the find operation.

	schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed
directly to the underlying find operation.

	Returns

	An instance of class:pandas.DataFrame.

monkey – Add PyMongoArrow APIs to PyMongo

Add PyMongoArrow APIs to PyMongo.

	
pymongoarrow.monkey.patch_all()

	Patch all PyMongoArrow methods into PyMongo.

Calling this method equips the pymongo.collection.Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection]
classes returned by PyMongo with PyMongoArrow’s API methods. When using a
patched method, users can omit the first argument which is passed
implicitly. For example:

Example of direct usage
df = find_pandas_all(coll.db.test, {'amount': {'$gte': 20}}, schema=schema)

Example of patched usage
df = coll.db.test.find_pandas_all({'amount': {'$gte': 20}}, schema=schema)

Changelog

Changes in Version 0.2.0

	Support for PyMongo 4.0.

	Support for Python 3.10.

	Support for Windows.

	find_arrow_all now accepts a user-provided projection.

	find_raw_batches now accepts a session object.

	Note: The supported version of pyarrow is now >=6,<6.1.

Changes in Version 0.1.1

	Fixed a bug that caused Linux wheels to be created without the appropriate
manylinux platform tags.

Changes in Version 0.1.0

	Support for efficiently converting find and aggregate query result sets into
Arrow/Pandas/Numpy data structures.

	Support for patching PyMongo’s APIs using patch_all()

	Support for loading the following BSON types [http://bsonspec.org/spec.html]:

	64-bit binary floating point

	32-bit integer

	64-bit integer

	Timestamp

Developer Guide

Technical guide for contributors to PyMongoArrow.

	Installing from source

Installing from source

System Requirements

On macOS, you need a working modern XCode installation with the XCode
Command Line Tools. Additionally, you need CMake and pkg-config:

$ xcode-select --install
$ brew install cmake
$ brew install pkg-config

On Linux, you require gcc 4.8, CMake and pkg-config.

Windows is not yet supported.

Environment Setup

First, clone the mongo-arrow git repository:

$ git clone https://github.com/mongodb-labs/mongo-arrow.git
$ cd mongo-arrow/bindings/python

Additionally, create a virtualenv in which to install pymongoarrow
from sources:

$ virtualenv pymongoarrow
$ source ./pymongoarrow/bin/activate

libbson

PyMongoArrow uses libbson [http://mongoc.org/libbson/current/index.html].
Detailed instructions for building/installing libbson can be found
here [http://mongoc.org/libmongoc/1.17.5/installing.html#installing-the-mongodb-c-driver-libmongoc-and-bson-library-libbson].

On macOS, users can install the latest libbson via Homebrew:

$ brew install mongo-c-driver

Alternatively, you can use the provided build-libbson.sh script to build it:

$ LIBBSON_INSTALL_DIR=$(pwd)/libbson ./build-libbson.sh

Build

In the previously created virtualenv, install PyMongoArrow and its test dependencies in editable mode:

(pymongoarrow) $ pip install -v -e ".[test]"

If you built libbson using the build-libbson script then use the same LIBBSON_INSTALL_DIR as above:

(pymongoarrow) $ LIBBSON_INSTALL_DIR=$(pwd)/libbson pip install -v -e “.[test]”

Test

To run the test suite, you will need a MongoDB instance running on
localhost using port 27017. To run the entire test suite, do:

(pymongoarrow) $ python -m unittest discover test

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pymongoarrow	
 Tools for working with MongoDB and PyArrow

 	
 	
 pymongoarrow.api	
 PyMongoArrow APIs

 	
 	
 pymongoarrow.monkey	
 Add PyMongoArrow APIs to PyMongo

Index

 A
 | F
 | M
 | P
 | S

A

 	
 	aggregate_arrow_all() (in module pymongoarrow.api)

 	
 	aggregate_numpy_all() (in module pymongoarrow.api)

 	aggregate_pandas_all() (in module pymongoarrow.api)

F

 	
 	find_arrow_all() (in module pymongoarrow.api)

 	
 	find_numpy_all() (in module pymongoarrow.api)

 	find_pandas_all() (in module pymongoarrow.api)

M

 	
 	
 module

 	pymongoarrow

 	pymongoarrow.api

 	pymongoarrow.monkey

P

 	
 	patch_all() (in module pymongoarrow.monkey)

 	
 pymongoarrow

 	module

 	
 	
 pymongoarrow.api

 	module

 	
 pymongoarrow.monkey

 	module

S

 	
 	Schema (class in pymongoarrow.api)

Frequently Asked Questions

Contents

	Frequently Asked Questions

	Why do I get ModuleNotFoundError: No module named 'pandas' when using PyMongoArrow

Why do I get ModuleNotFoundError: No module named 'pandas' when using PyMongoArrow

This error is raised when an application attempts to use a PyMongoArrow API
that returns query result sets as a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] instance without
having pandas installed in the Python environment. Since pandas is not
a direct dependency of PyMongoArrow, it is not automatically installed when
you install pymongoarrow and must be installed separately:

$ python -m pip install pandas

 nav.xhtml

 Table of Contents

 		
 PyMongoArrow 0.2.0 Documentation

_static/plus.png

_static/file.png

_static/minus.png

