
PyMongoArrow
Release 0.2.0

Prashant Mital

Mar 02, 2022

CONTENTS

1 Overview 1

2 Getting Help 3

3 Issues 5

4 Feature Requests / Feedback 7

5 Contributing 9

6 Changes 11

7 About This Documentation 13

8 Indices and tables 15
8.1 Installing / Upgrading . 15
8.2 Quick Start . 16
8.3 Supported Types . 18
8.4 pymongoarrow – Tools for working with MongoDB and PyArrow 19
8.5 Changelog . 21
8.6 Developer Guide . 22

Python Module Index 25

Index 27

i

ii

CHAPTER

ONE

OVERVIEW

PyMongoArrow is a PyMongo extension containing tools for loading MongoDB query result sets as Apache Arrow
tables, Pandas and NumPy arrays. PyMongoArrow is the recommended way to materialize MongoDB query result sets
as contiguous-in-memory, typed arrays suited for in-memory analytical processing applications. This documentation
attempts to explain everything you need to know to use PyMongoArrow.

Installing / Upgrading Instructions on how to get the distribution.

Quick Start Start here for a quick overview.

Supported Types A list of BSON types that are supported by PyMongoArrow.

faq Frequently asked questions.

pymongoarrow – Tools for working with MongoDB and PyArrow The complete API documentation, organized by
module.

1

http://pymongo.readthedocs.io/
http://www.mongodb.org
http://arrow.apache.org
https://pandas.pydata.org
https://numpy.org

PyMongoArrow, Release 0.2.0

2 Chapter 1. Overview

CHAPTER

TWO

GETTING HELP

If you’re having trouble or have questions about PyMongoArrow, ask your question on our MongoDB Community
Forum. Once you get an answer, it’d be great if you could work it back into this documentation and contribute!

3

https://developer.mongodb.com/community/forums/tags/c/drivers-odms-connectors/7/python-driver
https://developer.mongodb.com/community/forums/tags/c/drivers-odms-connectors/7/python-driver

PyMongoArrow, Release 0.2.0

4 Chapter 2. Getting Help

CHAPTER

THREE

ISSUES

All issues should be reported (and can be tracked / voted for / commented on) at the main MongoDB JIRA bug tracker,
in the “Python Driver” project.

5

http://jira.mongodb.org/browse/PYTHON

PyMongoArrow, Release 0.2.0

6 Chapter 3. Issues

CHAPTER

FOUR

FEATURE REQUESTS / FEEDBACK

Use our feedback engine to send us feature requests and general feedback about PyMongoArrow.

7

https://feedback.mongodb.com/forums/924286-drivers

PyMongoArrow, Release 0.2.0

8 Chapter 4. Feature Requests / Feedback

CHAPTER

FIVE

CONTRIBUTING

Contributions to PyMongoArrow are encouraged. To contribute, fork the project on GitHub and send a pull request.

See also Developer Guide.

9

https://github.com/mongodb-labs/mongo-arrow/tree/main/bindings/python

PyMongoArrow, Release 0.2.0

10 Chapter 5. Contributing

CHAPTER

SIX

CHANGES

See the Changelog for a full list of changes to PyMongoArrow.

11

PyMongoArrow, Release 0.2.0

12 Chapter 6. Changes

CHAPTER

SEVEN

ABOUT THIS DOCUMENTATION

This documentation is generated using the Sphinx documentation generator. The source files for the documentation
are located in the docs/ directory of the PyMongoArrow distribution. To generate the docs locally run the following
command from the root directory of the PyMongoArrow source:

$ cd docs && make html

13

https://www.sphinx-doc.org/en/master/

PyMongoArrow, Release 0.2.0

14 Chapter 7. About This Documentation

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

8.1 Installing / Upgrading

8.1.1 System Compatibility

PyMongoArrow is regularly built and tested on macOS and Linux (Ubuntu 20.04).

8.1.2 Python Compatibility

PyMongoArrow is currently compatible with CPython 3.6, 3.7, 3.8 and 3.9.

8.1.3 Using Pip

PyMongoArrow is available on PyPI. We recommend using pip to install pymongoarrow on all platforms:

$ python -m pip install pymongoarrow

To get a specific version of pymongo:

$ python -m pip install pymongoarrow==0.1.1

To upgrade using pip:

$ python -m pip install --upgrade pymongoarrow

Attention: Installing PyMongoArrow from wheels on macOS Big Sur requires pip >= 20.3. To upgrade pip run:

$ python -m pip install --upgrade pip

We currently distribute wheels for macOS and Linux on x86_64 architectures.

15

http://pypi.python.org/pypi/pymongo/
http://pypi.python.org/pypi/pip
https://www.python.org/dev/peps/pep-0427/

PyMongoArrow, Release 0.2.0

Dependencies

PyMongoArrow requires:

• PyMongo>=3.11,<4

• PyArrow>=3,<3.1

To use PyMongoArrow with a PyMongo feature that requires an optional dependency, users must install PyMongo
with the given dependency manually.

Note: PyMongo’s optional dependencies are detailed here.

For example, to use PyMongoArrow with MongoDB Atlas’ mongodb+srv:// URIs users must install PyMongo with
the srv extra in addition to installing PyMongoArrow:

$ python -m pip install 'pymongo[srv]<4' pymongoarrow

Applications intending to use PyMongoArrow APIs that return query result sets as pandas.DataFrame instances (e.g.
find_pandas_all()) must also have pandas installed:

$ python -m pip install pandas

8.1.4 Installing from source

See Installing from source.

8.2 Quick Start

This tutorial is intended as an introduction to working with PyMongoArrow. The reader is assumed to be familiar
with basic PyMongo and MongoDB concepts.

8.2.1 Prerequisites

Before we start, make sure that you have the PyMongoArrow distribution installed. In the Python shell, the following
should run without raising an exception:

import pymongoarrow as pma

This tutorial also assumes that a MongoDB instance is running on the default host and port. Assuming you have
downloaded and installed MongoDB, you can start it like so:

$ mongod

16 Chapter 8. Indices and tables

https://pymongo.readthedocs.io/en/stable/installation.html#dependencies
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pymongo.readthedocs.io/en/stable/tutorial.html
https://docs.mongodb.com
https://docs.mongodb.com/manual/installation/

PyMongoArrow, Release 0.2.0

Extending PyMongo

The pymongoarrow.monkey module provides an interface to patch PyMongo, in place, and add PyMongoArrow’s
functionality directly to Collection instances:

from pymongoarrow.monkey import patch_all
patch_all()

After running patch_all(), new instances of Collection will have PyMongoArrow’s APIs, e.g.
find_pandas_all().

Note: Users can also directly use any of PyMongoArrow’s APIs by importing them from pymongoarrow.api. The
only difference in usage would be the need to manually pass the instance of Collection on which the operation is to
be run as the first argument when directly using the API method.

Test data

Before we begein, we must first add some data to our cluster that we can query. We can do so using PyMongo:

from datetime import datetime
from pymongo import MongoClient
client = MongoClient()
client.db.data.insert_many([

{'_id': 1, 'amount': 21, 'last_updated': datetime(2020, 12, 10, 1, 3, 1)},
{'_id': 2, 'amount': 16, 'last_updated': datetime(2020, 7, 23, 6, 7, 11)},
{'_id': 3, 'amount': 3, 'last_updated': datetime(2021, 3, 10, 18, 43, 9)},
{'_id': 4, 'amount': 0, 'last_updated': datetime(2021, 2, 25, 3, 50, 31)}])

8.2.2 Defining the schema

PyMongoArrow relies upon a user-specified data schema to marshall query result sets into tabular form. Users can
define the schema by instantiating pymongoarrow.api.Schema using a mapping of field names to type-specifiers,
e.g.:

from pymongoarrow.api import Schema
schema = Schema({'_id': int, 'amount': float, 'last_updated': datetime})

There are multiple permissible type-identifiers for each supported BSON type. For a full-list of supported types and
associated type-identifiers see Supported Types.

8.2.3 Find operations

We are now ready to query our data. Let’s start by running a find operation to load all records with a non-zero amount
as a pandas.DataFrame:

df = client.db.data.find_pandas_all({'amount': {'$gt': 0}}, schema=schema)

We can also load the same result set as a pyarrow.Table instance:

8.2. Quick Start 17

https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection
https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection
https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table

PyMongoArrow, Release 0.2.0

arrow_table = client.db.data.find_arrow_all({'amount': {'$gt': 0}}, schema=schema)

Or as numpy.ndarray instances:

ndarrays = client.db.data.find_numpy_all({'amount': {'$gt': 0}}, schema=schema)

In the NumPy case, the return value is a dictionary where the keys are field names and values are the corresponding
arrays.

8.2.4 Aggregate operations

Running aggregate operations is similar to find. Here is an example of an aggregation that loads all records with an
amount less than 10:

pandas
df = client.db.data.aggregate_pandas_all([{'$match': {'amount': {'$lte': 10}}}],␣
→˓schema=schema)
arrow
arrow_table = client.db.data.aggregate_arrow_all([{'$match': {'amount': {'$lte': 10}}}],␣
→˓schema=schema)
numpy
ndarrays = client.db.data.aggregate_numpy_all([{'$match': {'amount': {'$lte': 10}}}],␣
→˓schema=schema)

8.2.5 Writing to other formats

Result sets that have been loaded as Arrow’s Table type can be easily written to one of the formats supported by
PyArrow. For example, to write the table referenced by the variable arrow_table to a Parquet file example.parquet,
run:

import pyarrow.parquet as pq
pq.write_table(arrow_table, 'example.parquet')

Pandas also supports writing DataFrame instances to a variety of formats including CSV, and HDF. For example, to
write the data frame referenced by the variable df to a CSV file out.csv, run:

df.to_csv('out.csv', index=False)

8.3 Supported Types

PyMongoArrow currently supports a small subset of all BSON types. Support for additional types will be added in
subsequent releases.

Note: For more information about BSON types, see the BSON specification.

18 Chapter 8. Indices and tables

https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray
https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table
https://arrow.apache.org/docs/python/index.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
http://bsonspec.org/spec.html

PyMongoArrow, Release 0.2.0

BSON Type Type Identifiers
64-bit binary floating point py.float, an instance of pyarrow.float64()
32-bit integer an instance of pyarrow.int32()
64-bit integer int, bson.int64.Int64, an instance of pyarrow.int64()
UTC datetime an instance of timestamp with ms resolution, py.datetime.datetime

Type identifiers can be used to specify that a field is of a certain type during pymongoarrow.api.Schema declaration.
For example, if your data has fields ‘f1’ and ‘f2’ bearing types 32-bit integer and UTC datetime respectively, your
schema can be defined as:

schema = Schema({'f1': pyarrow.int32(), 'f2': pyarrow.timestamp('ms')})

8.4 pymongoarrow – Tools for working with MongoDB and PyArrow

Sub-modules:

8.4.1 api – PyMongoArrow APIs

class pymongoarrow.api.Schema(schema)
A mapping of field names to data types.

To create a schema, provide its constructor a mapping of field names to their expected types, e.g.:

schema1 = Schema({'field_1': int, 'field_2': float})

Each key in schema is a field name and its corresponding value is the expected type of the data contained in the
named field.

Data types can be specified as pyarrow type instances (e.g. an instance of pyarrow.int64), bson types (e.g.
bson.Int64), or python type-identifiers (e.g. int, float). To see a complete list of supported data types and
their corresponding type-identifiers, see Supported Types.

pymongoarrow.api.aggregate_arrow_all(collection, pipeline, *, schema, **kwargs)
Method that returns the results of an aggregation pipeline as a pyarrow.Table instance.

Parameters

• collection: Instance of Collection. against which to run the aggregate operation.

• pipeline: A list of aggregation pipeline stages.

• schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed directly to the underlying aggregate op-
eration.

Returns An instance of class:pyarrow.Table.

pymongoarrow.api.aggregate_numpy_all(collection, pipeline, *, schema, **kwargs)
Method that returns the results of an aggregation pipeline as a dict instance whose keys are field names and
values are ndarray instances bearing the appropriate dtype.

Parameters

• collection: Instance of Collection. against which to run the find operation.

• query: A mapping containing the query to use for the find operation.

8.4. pymongoarrow – Tools for working with MongoDB and PyArrow 19

https://pymongo.readthedocs.io/en/stable/api/bson/int64.html#bson.int64.Int64
https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table
https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection
https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection

PyMongoArrow, Release 0.2.0

• schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed directly to the underlying aggregate op-
eration.

This method attempts to create each NumPy array as a view on the Arrow data corresponding to each field in
the result set. When this is not possible, the underlying data is copied into a new NumPy array. See pyarrow.
Array.to_numpy() for more information.

NumPy arrays returned by this method that are views on Arrow data are not writable. Users seeking to modify
such arrays must first create an editable copy using numpy.copy().

Returns An instance of dict.

pymongoarrow.api.aggregate_pandas_all(collection, pipeline, *, schema, **kwargs)
Method that returns the results of an aggregation pipeline as a pandas.DataFrame instance.

Parameters

• collection: Instance of Collection. against which to run the find operation.

• pipeline: A list of aggregation pipeline stages.

• schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed directly to the underlying aggregate op-
eration.

Returns An instance of class:pandas.DataFrame.

pymongoarrow.api.find_arrow_all(collection, query, *, schema, **kwargs)
Method that returns the results of a find query as a pyarrow.Table instance.

Parameters

• collection: Instance of Collection. against which to run the find operation.

• query: A mapping containing the query to use for the find operation.

• schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed directly to the underlying find operation.

Returns An instance of class:pyarrow.Table.

pymongoarrow.api.find_numpy_all(collection, query, *, schema, **kwargs)
Method that returns the results of a find query as a dict instance whose keys are field names and values are
ndarray instances bearing the appropriate dtype.

Parameters

• collection: Instance of Collection. against which to run the find operation.

• query: A mapping containing the query to use for the find operation.

• schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed directly to the underlying find operation.

This method attempts to create each NumPy array as a view on the Arrow data corresponding to each field in
the result set. When this is not possible, the underlying data is copied into a new NumPy array. See pyarrow.
Array.to_numpy() for more information.

NumPy arrays returned by this method that are views on Arrow data are not writable. Users seeking to modify
such arrays must first create an editable copy using numpy.copy().

Returns An instance of dict.

20 Chapter 8. Indices and tables

https://arrow.apache.org/docs/python/generated/pyarrow.Array.html#pyarrow.Array.to_numpy
https://arrow.apache.org/docs/python/generated/pyarrow.Array.html#pyarrow.Array.to_numpy
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection
https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table
https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection
https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection
https://arrow.apache.org/docs/python/generated/pyarrow.Array.html#pyarrow.Array.to_numpy
https://arrow.apache.org/docs/python/generated/pyarrow.Array.html#pyarrow.Array.to_numpy

PyMongoArrow, Release 0.2.0

pymongoarrow.api.find_pandas_all(collection, query, *, schema, **kwargs)
Method that returns the results of a find query as a pandas.DataFrame instance.

Parameters

• collection: Instance of Collection. against which to run the find operation.

• query: A mapping containing the query to use for the find operation.

• schema: Instance of Schema.

Additional keyword-arguments passed to this method will be passed directly to the underlying find operation.

Returns An instance of class:pandas.DataFrame.

8.4.2 monkey – Add PyMongoArrow APIs to PyMongo

Add PyMongoArrow APIs to PyMongo.

pymongoarrow.monkey.patch_all()
Patch all PyMongoArrow methods into PyMongo.

Calling this method equips the pymongo.collection.Collection classes returned by PyMongo with Py-
MongoArrow’s API methods. When using a patched method, users can omit the first argument which is passed
implicitly. For example:

Example of direct usage
df = find_pandas_all(coll.db.test, {'amount': {'$gte': 20}}, schema=schema)

Example of patched usage
df = coll.db.test.find_pandas_all({'amount': {'$gte': 20}}, schema=schema)

8.5 Changelog

8.5.1 Changes in Version 0.2.0

• Support for PyMongo 4.0.

• Support for Python 3.10.

• Support for Windows.

• find_arrow_all now accepts a user-provided projection.

• find_raw_batches now accepts a session object.

• Note: The supported version of pyarrow is now >=6,<6.1.

8.5. Changelog 21

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection
https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection

PyMongoArrow, Release 0.2.0

8.5.2 Changes in Version 0.1.1

• Fixed a bug that caused Linux wheels to be created without the appropriate manylinux platform tags.

8.5.3 Changes in Version 0.1.0

• Support for efficiently converting find and aggregate query result sets into Arrow/Pandas/Numpy data structures.

• Support for patching PyMongo’s APIs using patch_all()

• Support for loading the following BSON types:

– 64-bit binary floating point

– 32-bit integer

– 64-bit integer

– Timestamp

8.6 Developer Guide

Technical guide for contributors to PyMongoArrow.

8.6.1 Installing from source

System Requirements

On macOS, you need a working modern XCode installation with the XCode Command Line Tools. Additionally, you
need CMake and pkg-config:

$ xcode-select --install
$ brew install cmake
$ brew install pkg-config

On Linux, you require gcc 4.8, CMake and pkg-config.

Windows is not yet supported.

Environment Setup

First, clone the mongo-arrow git repository:

$ git clone https://github.com/mongodb-labs/mongo-arrow.git
$ cd mongo-arrow/bindings/python

Additionally, create a virtualenv in which to install pymongoarrow from sources:

$ virtualenv pymongoarrow
$ source ./pymongoarrow/bin/activate

22 Chapter 8. Indices and tables

http://bsonspec.org/spec.html

PyMongoArrow, Release 0.2.0

libbson

PyMongoArrow uses libbson. Detailed instructions for building/installing libbson can be found here.

On macOS, users can install the latest libbson via Homebrew:

$ brew install mongo-c-driver

Alternatively, you can use the provided build-libbson.sh script to build it:

$ LIBBSON_INSTALL_DIR=$(pwd)/libbson ./build-libbson.sh

Build

In the previously created virtualenv, install PyMongoArrow and its test dependencies in editable mode:

(pymongoarrow) $ pip install -v -e ".[test]"

If you built libbson using the build-libbson script then use the same LIBBSON_INSTALL_DIR as above:

(pymongoarrow) $ LIBBSON_INSTALL_DIR=$(pwd)/libbson pip install -v -e “.[test]”

Test

To run the test suite, you will need a MongoDB instance running on localhost using port 27017. To run the entire
test suite, do:

(pymongoarrow) $ python -m unittest discover test

8.6. Developer Guide 23

http://mongoc.org/libbson/current/index.html
http://mongoc.org/libmongoc/1.17.5/installing.html#installing-the-mongodb-c-driver-libmongoc-and-bson-library-libbson

PyMongoArrow, Release 0.2.0

24 Chapter 8. Indices and tables

PYTHON MODULE INDEX

p
pymongoarrow, 19
pymongoarrow.api, 19
pymongoarrow.monkey, 21

25

PyMongoArrow, Release 0.2.0

26 Python Module Index

INDEX

A
aggregate_arrow_all() (in module pymongoar-

row.api), 19
aggregate_numpy_all() (in module pymongoar-

row.api), 19
aggregate_pandas_all() (in module pymongoar-

row.api), 20

F
find_arrow_all() (in module pymongoarrow.api), 20
find_numpy_all() (in module pymongoarrow.api), 20
find_pandas_all() (in module pymongoarrow.api), 20

M
module

pymongoarrow, 19
pymongoarrow.api, 19
pymongoarrow.monkey, 21

P
patch_all() (in module pymongoarrow.monkey), 21
pymongoarrow

module, 19
pymongoarrow.api

module, 19
pymongoarrow.monkey

module, 21

S
Schema (class in pymongoarrow.api), 19

27

	Overview
	Getting Help
	Issues
	Feature Requests / Feedback
	Contributing
	Changes
	About This Documentation
	Indices and tables
	Installing / Upgrading
	System Compatibility
	Python Compatibility
	Using Pip
	Dependencies

	Installing from source

	Quick Start
	Prerequisites
	Extending PyMongo
	Test data

	Defining the schema
	Find operations
	Aggregate operations
	Writing to other formats

	Supported Types
	pymongoarrow – Tools for working with MongoDB and PyArrow
	api – PyMongoArrow APIs
	monkey – Add PyMongoArrow APIs to PyMongo

	Changelog
	Changes in Version 0.2.0
	Changes in Version 0.1.1
	Changes in Version 0.1.0

	Developer Guide
	Installing from source
	System Requirements
	Environment Setup
	libbson

	Build
	Test

	Python Module Index
	Index

